
ELECTROSTATICS 

In electrostatics we deal with the behaviour of charges at rest. While studying electrostatics 
we often talk about two kinds of charges; source charges and test charges. If a charge is 
placed in the vicinity of another charge and experiences Coulomb’s force, we call that charge 
as the test charge and the one in whose vicinity the test charge is placed is called source 
charge. The study of electrostatics requires the source charge to be stationary (though the test 
charge may be moving).  

Source charge as the name suggests is the source of something- in this case is the source of 
electric force field. We call this the electric field. Electric field is the region around charge in 
which if a test charge is placed it experiences an electric force. The electric force is the 
Coulomb’s force. The Coulomb’s force is given by the expression  

 
𝐹 =

1

4𝜋𝜖଴

𝑞𝑄

𝑟ଶ
𝑟̂ 

 
(1) 

 

This gives the force on test charge 𝑄 due to the source charge 𝑞 which is at rest at a distance 
𝑟 away from 𝑄. The constant 𝜖଴ is called the permittivity of free space whose value in SI 
units is  

𝜖଴ = 8.85 × 10ିଵଶ𝐶ଶ𝑁ିଵ𝑚ଶ 

The expression for electric force can be written as  

𝐹 = 𝑄𝐸 

Where  𝐸 =
1

4𝜋𝜖଴

𝑞

𝑟ଶ
𝑟̂ (2) 

 

 is called the electric field strength.  That is the electric field strength is the Coulomb’s force 
per unit test charge due to the source charge q. Electric field strength is a vector quantity.   

Electric flux 

Graphically we represent the electric field strength by arrows called field lines. The number 
of field lines passing through a given surface in the direction perpendicular to the area of 
surface is called the flux of E through that surface. Mathematically it is given by 

𝑑𝜙 = 𝐸 ∙ 𝑑𝑎 

Where 𝑑𝑎 is the area vector in the normal direction to the element. The total flux through a 
finite area is given by 

𝜙 = ඵ 𝐸 ∙ 𝑑𝑎 



If the surface is closed we write 

𝜙 = ඾ 𝐸 ∙ 𝑑𝑎 

Gauss Law: 

It states that the total electric flux through a closed surface is equal to 
ଵ 

ఢబ
 times the total 

charge enclosed by the surface when the medium is vacuum. 

 Mathematically if q is the charge enclosed by a surface  

 
𝜙 = ඾ 𝐸 ∙ 𝑑𝑎 =

𝑞

𝜖଴
 

 
(3) 

The proof of this law comes from the definition of electric flux itself. 

Consider a closed surface S surrounding charge +q (fig 1). 

 

                                                                 Figure 1 

The total electric flux through this closed surface is 

 

𝜙 = ඾ 𝐸 ∙ 𝑑𝑎 

Using 𝐸 =
ଵ

ସగఢబ

௤

௥మ 𝑟̂, we get 

𝜙 = ඾
1

4𝜋𝜖଴

𝑞

𝑟ଶ
𝑟̂ ∙ 𝑑𝑎 =

𝑞

4𝜋𝜖଴
඾

𝑟̂ ∙ 𝑑𝑎

𝑟ଶ
=

𝑞

4𝜋𝜖଴
඾ 𝑑Ω 

Where 𝑑Ω =
௥̂∙ௗ௔

௥మ
 is called the solid angle and its value for the closed surface is 4𝜋. That is 

∯ 𝑑Ω = 4𝜋. 

∴ 𝜙 =
𝑞

4𝜋𝜖଴
4𝜋 =

𝑞

𝜖଴
 

This is Gauss law. 



Now if instead of a single charge +q we have number of charges then the total charge 
enclosed inside will be sum of all the charges. 

Therefore 𝑄௘௡௖. = ∑ 𝑞௜
௡
௜ୀଵ . 

Then  𝜙 =
ொ೐೙೎.

ఢబ
 

From Gauss law it is clear that it is the total charge inside the closed surface which 
contributes to the electric flux. If the charge is outside of the  surface the total flux is zero, 
because field lines passing through one side and out through the other. 

Gauss law discussed above has an integral form and hence it is called the integral form of 
Gauss law. Now we will turn this into differential form.  

By applying the Gauss divergence theorem for vector E 

 
඾ 𝐸 ∙ 𝑑𝑎 = ම(∇ ∙ 𝐸)𝑑𝜏 

 
(4) 

If 𝜌 is the volume charge density we can write total charge enclosed as  

 
𝑄௘௡௖. = ම 𝜌𝑑𝜏. 

 
(5) 

So the integral form of Gauss law using equation (4) and (5) becomes 

ම(∇ ∙ 𝐸)𝑑𝜏 = ම
𝜌

𝜖଴
𝑑𝜏 

Since it holds for any volume the integrands must be equal. 

 
∇ ∙ 𝐸 =

𝜌

𝜖଴
 

 
(6) 

This is the Gauss law in differential form. This gives us the divergence of E and is the first 
Maxwell equation of electrodynamics   

Line integral of electric field 

Suppose there is a positive charge +q (source charge) somewhere in space producing an 
electric field E. A test charge Q brought in this field will experience an electric force. To 
carry the charge Q towards the source charge against the electric forces a force F is required 
which can be given as 

 

 
𝐹 = −𝑄𝐸 

 
(7) 

(negative sign indicates that charge Q is carried against the electric force)  



Let the test charge is displaced through infinitesimal distance dl, then the small work done in 
making this displacement is 

𝑑𝑊 = 𝐹 ∙ 𝑑𝑙 = −𝑄𝐸 ∙ 𝑑𝑙 

If the test charge is moved through an arbitrary path from points 𝑎 to 𝑏, total work done in 
doing so is 

𝑊 = න 𝑑𝑊 = −𝑄 න 𝐸 ∙ 𝑑𝑙

௕

௔

 

Now if the work is done in carrying one unit of charge i.e. 𝑄 = 0 we will have 

 
𝑊 = − න 𝐸 ∙ 𝑑𝑙

௕

௔

 

 

(8) 

The term ∫ 𝐸 ∙ 𝑑𝑙
௕

௔
 is called the line integral of electric field along a path between two points 

𝑎 and 𝑏 and is defined as the work done in moving a unit positive charge along that path. 
The negative sign is a matter of convention as it is carried from the equation 𝐹 = −𝑄𝐸. 

Conservative nature of electric field: the curl of E 

 From the vector calculus we have studied that conservative field is one whose curl is zero. 
To show that electric field is conservative field we need to prove that curl of E is zero. 

The electric field for a point charge q at origin is  

𝐸 =
1

4𝜋𝜖଴

𝑞

𝑟ଶ
𝑟̂ 

 

                          Figure 2 

 

 

The line integral of electric field between two points 𝑎 and 𝑏 is 



න 𝐸 ∙ 𝑑𝑙

௕

௔

 

Now 𝐸 ∙ 𝑑𝑙 =
ଵ

ସగఢబ

௤

௥మ 𝑟̂ ∙ 𝑑𝑙 =
ଵ

ସగఢబ

௤

௥మ 𝑑𝑟   [𝑟̂ ∙ 𝑑𝑙 = 𝑑𝑟]1 

Therefore, 

න 𝐸 ∙ 𝑑𝑙

௕

௔

=
𝑞

4𝜋𝜖଴
න

1

𝑟ଶ
=

−𝑞

4𝜋𝜖଴

 1

𝑟
ฬ

௥ೌ

௥್

=
𝑞

4𝜋𝜖଴
൬

1

𝑟௔
−

1

𝑟௕
൰

௕

௔

 

 න 𝐸 ∙ 𝑑𝑙

௕

௔

=
𝑞

4𝜋𝜖଴
൬

1

𝑟௔
−

1

𝑟௕
൰ (9) 

Where 𝑟௔ and 𝑟௕ are the distances of point 𝑎 and 𝑏 from the origin. From this equation it is 
clear that the line integral of electric field is not path dependent but depends only on the end 
points of the path along which the integral is taken. If the integral is taken around a closed 
path points 𝑎 and 𝑏 would coincide and the integral would then be zero (because then 
𝑟௔ = 𝑟௕). 

 
ර 𝐸 ∙ 𝑑𝑙 = 0 

 
(10) 

According to the stokes theorem 

 
ර 𝐸 ∙ 𝑑𝑙 = ඵ(∇ × 𝐸) ∙ 𝑑𝑎 

 
(11) 

Using (11) in (10) we therefore have 

 
∇ × 𝐸 = 0 

 
(12) 

This result proves that E is a conservative field. Note that this result can also be understood 
from the electric field lines. Electric field lines either diverge from a positive charge or 
converge at a negative charge. These lines do not form circulations and hence are curl free. 
Thus the electric field represented by these field lines has a zero curl.  

Electric potential 

Electric potential at any point is defined as the amount of work done in bringing a unit 
positive charge from infinity to that point against the electrostatic force. It is represented by 
V. 

                                                           
1From the fig 𝑟̂ ∙ 𝑑𝑙 = 𝑑𝑙 cos 𝜃. In right angled triangle PQR (RQ is drawn normal to PQ)  
ௗ௥

ௗ௟
= cos 𝜃 or 𝑑𝑟 = 𝑑𝑙 cos 𝜃. 



As we know that the amount of work done in moving a charge between two points against the 
electrostatic force is equal to the line integral of electric field strength taken along the path 
joining the two points. So if a charge is moved from infinity to a point 𝑎, mathematically we 
can write electric potential as, 

 
𝑉 = − න 𝐸 ∙ 𝑑𝑙

௔

ஶ

 

 

(13) 

If we have two points 𝑎 and 𝑏, then electric potentials at these points are 

𝑉௔ = − න 𝐸 ∙ 𝑑𝑙

௔

ஶ

 

And  

𝑉௕ = − න 𝐸 ∙ 𝑑𝑙

௕

ஶ

 

Now the difference in potentials at points 𝑎 and 𝑏 is 

𝑉௕ − 𝑉௔ = − න 𝐸 ∙ 𝑑𝑙

௕

ஶ

+ න 𝐸 ∙ 𝑑𝑙 = − න 𝐸 ∙ 𝑑𝑙

௕

ஶ

− න 𝐸 ∙ 𝑑𝑙

ஶ

௔

௔

ஶ

 

= − ቌන 𝐸 ∙ 𝑑𝑙

௕

ஶ

+ න 𝐸 ∙ 𝑑𝑙

ஶ

௔

ቍ 

𝑉௕ − 𝑉௔ = − න 𝐸 ∙ 𝑑𝑙

௕

௔

= 𝑊௔௕ 

This difference is called the potential difference. Wୟୠis the work done in moving the unit 
positive charge between points a and b. So the potential difference between any two points 𝑎 
and 𝑏 is defined as the amount of work done in moving a unit positive charge between points 
𝑎 and 𝑏 against the electrostatic force. 

In the previous section we have calculated the value for line integral of 𝐸 between two points 
𝑎 and 𝑏, which is  

න 𝐸 ∙ 𝑑𝑙

௕

௔

=
𝑞

4𝜋𝜖଴
൬

1

𝑟௔
−

1

𝑟௕
൰ 

Where 𝑟௔ and 𝑟௕ are the distances of point 𝑎 and 𝑏 from the origin. If point 𝑎 is ∞, we can 
define potential at point 𝑏 as  



𝑉௕ = − න 𝐸 ∙ 𝑑𝑙

௕

ஶ

= −
𝑞

4𝜋𝜖଴
൬

1

∞
−

1

𝑟௕
൰ =

𝑞

4𝜋𝜖଴

1

𝑟௕
 

This is the expression for electric potential at any point 𝑏. This expression holds for every 
point in space so writing 𝑉 for 𝑉௕ and 𝑟 for 𝑟௕ we can write the expression for the electric 
potential as  

 
𝑉 =

𝑞

4𝜋𝜖଴𝑟
 

 
(14) 

Electric field as negative gradient of electric potential 

We proved earlier that electric field is a conservative field which means ∇ × 𝐸 = 0.  The 
theorem on vector calculus says that if curl of a vector field is zero, the field can be expressed 
as gradient of a scalar potential. This theorem also holds for electric field and it can be 
expressed as negative gradient of electric potential. Let’s prove it. 

Electric potential at any point (say P) due a charge q at origin is 

𝑉 =
𝑞

4𝜋𝜖଴𝑟
 

Taking the gradient of 𝑉, we have 

∇𝑉 = ∇ ൤
𝑞

4𝜋𝜖଴𝑟
൨ =

𝑞

4𝜋𝜖଴
∇ ൬

1

𝑟
൰ =

𝑞

4𝜋𝜖଴
൬−

𝑟̂

𝑟ଶ
൰ = −

𝑞

4𝜋𝜖଴

𝑟̂

𝑟ଶ
 

But 
௤

ସగఢబ

௥̂

௥మ = 𝐸, the electric field due to charge q at point P. 

Hence we have, 

 
𝐸 = −∇𝑉 

 
(15) 

This expression is very useful in calculating vector function E from a scalar function V. 

Poisson’s and Laplace’s equations 

We can write the fundamental equation of E (the Gauss law) in terms of V. The Gauss law is 

∇ ∙ 𝐸 =
𝜌

𝜖଴
 

As  
𝐸 = −∇𝑉 

We can write  

∇ ∙ 𝐸 = ∇ ∙ (−∇𝑉) = −(∇ ∙ ∇)𝑉 = −∇ଶ𝑉 



So we see that the divergence of E is equal to negative of Laplacian of V. Rewriting Gauss 
law, we have 

 
∇ଶ𝑉 = −

𝜌

𝜖଴
 

 
(16) 

This is known as Poisson’s equation.  

In the regions where there is no charge, we have 𝜌 = 0 and then the Poisson’s equation 
reduces to 

 
∇ଶ𝑉 = 0 

 
(17) 

This is known as Laplace’s equation. 

 The Poisson’s and Laplace’s equations are used to find electric potential in the regions 
having finite charge density and zero charge density respectively.  

Electric quadrapole 

We are familiar with electric monopole and electric dipole. A single charge is called a 
monopole. Two charges of equal magnitude and opposite sign separated by a small distance 
is called a dipole. A dipole has a finite dipole moment which in magnitude is the product of 
any one of the charge and separation between the two charges and has a direction from the 
negative charge to the positive charge. When two dipoles are arranged in such a way that that 
their dipole moments have the same magnitude but point in opposite directions they 
constitute a quadrapole. Thus an electric quadrapole consist of a charge distribution which is 
same as a special arrangement of two electric dipoles. The arrangement of two dipoles 
forming a quadrapole is shown in the figure (3a) below. 

 

Figure 3a 

 

Figure 3b 

Electric potential due to a quadrapole 

Figure (3b) above shows a quadrapole of length 2𝑎 and P is some point at a distance 𝑟 from 
the centre of the quadrapole where we wish to find the electric potential. Electric potential 



obeys superposition principle and hence its value at point P due to the quadrapole will be 
equal to the sum of electric potentials due to various point charges of the quadrapole. 

Hence electric potential at point p is  

   
𝑉 =

1

4𝜋𝜖଴
൤

𝑞

𝑟ଵ
−

2𝑞

𝑟
+

𝑞

𝑟ଶ
൨ 

 
(18) 

 
𝑉 =

𝑞

4𝜋𝜖଴
൤

1

𝑟ଵ
−

2

𝑟
+

1

𝑟ଶ
൨ 

 

 (19) 
 

Now 𝑟ଵ = |𝑟ଵሬሬሬ⃗ | = |𝑟⃗ + 𝑎⃗| = (𝑟ଶ + 𝑎ଶ + 2𝑟 ∙ 𝑎⃗)ଵ/ଶ = (𝑟ଶ + 𝑎ଶ + 2𝑟𝑎 cos 𝜃)ଵ/ଶ 

Where 𝜃 is the angle between 𝑟 and 𝑎⃗. 

𝑟ଵ = 𝑟 ቈ1 +
𝑎ଶ

𝑟ଶ
+

2𝑎 cos 𝜃

𝑟
቉

ଵ/ଶ

 

1

𝑟ଵ
=

1

𝑟
ቈ1 + ቆ

𝑎ଶ

𝑟ଶ
+

2𝑎 cos 𝜃

𝑟
ቇ቉

ିଵ/ଶ

 

Expanding by Binomial theorem as (1 + 𝑥)௡ = 1 +
௡௫

ଵ!
+

௡(௡ିଵ)௫మ

ଶ!
+ ⋯, we have 

1

𝑟ଵ
=

1

𝑟
൥1 −

1

2
ቆ

𝑎ଶ

𝑟ଶ
+

2𝑎 cos 𝜃

𝑟
ቇ +

3

8
ቆ

𝑎ଶ

𝑟ଶ
+

2𝑎 cos 𝜃

𝑟
ቇ

ଶ

− ⋯ ൩ 

Since 𝑟 ≫ 𝑎, neglecting higher power terms (keeping terms only which contain second power 

of  
௔

௥
), we have 

1

𝑟ଵ
=

1

𝑟
ቈ1 −

𝑎ଶ

2𝑟ଶ
−

𝑎 cos 𝜃

𝑟
+

3

8
∙

4𝑎ଶ

𝑟ଶ
cosଶ 𝜃቉ 

 
1

𝑟ଵ
=

1

𝑟
ቈ1 +

𝑎ଶ

2𝑟ଶ
(3 cosଶ 𝜃 − 1) −

𝑎 cos 𝜃

𝑟
቉ 

 

(20) 

Using the same logic we can find 
ଵ

௥మ
, which is  

 
1

𝑟ଶ
=

1

𝑟
ቈ1 +

𝑎ଶ

2𝑟ଶ
(3 cosଶ 𝜃 − 1) +

𝑎 cos 𝜃

𝑟
቉ 

 

(21) 

Substituting the values of equation (20) and (21) in equation (19), we get  

𝑉 =
𝑞

4𝜋𝜖଴𝑟
ቈ1 +

𝑎ଶ

2𝑟ଶ
(3 cosଶ 𝜃 − 1) −

𝑎 cos 𝜃

𝑟
− 2 + 1 +

𝑎ଶ

2𝑟ଶ
(3 cosଶ 𝜃 − 1) −

𝑎 cos 𝜃

𝑟
቉ 



Or  

 𝑉 =
𝑞𝑎2

4𝜋𝜖0𝑟3 ൫3 cos2 𝜃 − 1൯ (22) 

This can also be written as follows. 

 𝑉 =
𝑄𝑑

8𝜋𝜖0𝑟3 ൫3 cos2 𝜃 − 1൯ (23) 

The product 2𝑞𝑎ଶ is called the electric quadrapole moment and is denoted by 𝑄ௗ. Equation 
(23) gives the expression for electric potential due to a linear quadrapole which varies 
inversely as the cube of distance. 

Electric field due to a quadrapole 

As we have calculated the expression for electric potential 𝑉 due to a quadrapole. Now using 
the relation 𝐸 = −∇𝑉 we can find electric field due to a quadrapole. 

In component form, we have 

𝐸௫ = −
𝜕𝑉

𝜕𝑥
 , 𝐸௬ = −

𝜕𝑉

𝜕𝑦
 , 𝐸௭ = −

𝜕𝑉

𝜕𝑧
 

Since  

𝑉 =
𝑞𝑎2

4𝜋𝜖0𝑟3 ൫3 cos2 𝜃 − 1൯ 

𝐸௫ = −
𝜕𝑉

𝜕𝑥
= −

𝑞𝑎ଶ

4𝜋𝜖଴

𝜕

𝜕𝑥
ቆ

3 cosଶ 𝜃

𝑟ଷ
−

1

𝑟ଷ
ቇ 

Using the relation 𝑥 = 𝑟 cos 𝜃 or cos 𝜃 =
௫

௥
 between polar and Cartesian coordinates we have 

𝐸௫ = −
𝑞𝑎ଶ

4𝜋𝜖଴

𝜕

𝜕𝑥
ቆ

3𝑥ଶ

𝑟ହ
−

1

𝑟ଷ
ቇ = −

𝑞𝑎ଶ

4𝜋𝜖଴
൤
6𝑥

𝑟ହ
+ 3𝑥ଶ

(−5)

𝑟଺

𝜕𝑟

𝜕𝑥
−

(−3)

𝑟ସ

𝜕𝑟

𝜕𝑥
൨ 

Since        

 
𝑟 = (𝑥ଶ + 𝑦ଶ + 𝑧ଶ)ଵ/ଶ,

𝜕𝑟

𝜕𝑥
=

𝑥

(𝑥ଶ + 𝑦ଶ + 𝑧ଶ)ଵ/ଶ
=

𝑥

𝑟
 , & 

𝜕𝑟

𝜕𝑦
=

𝑦

𝑟
  

 
(24) 

Therefore  

𝐸௫ = −
𝑞𝑎ଶ

4𝜋𝜖଴
ቈ
6𝑥

𝑟ହ
−

15𝑥ଷ

𝑟଻
+

3𝑥

𝑟ହ
቉ 

=
3𝑞𝑎ଶ

4𝜋𝜖଴𝑟ସ
ቈ
5𝑥ଷ

𝑟ଷ
−

3𝑥

𝑟
቉ 



 𝐸௫ =
3𝑞𝑎ଶ

4𝜋𝜖଴𝑟ସ
(5 cosଷ 𝜃 − 3 cos 𝜃) (25) 

Also        

𝐸௬ = −
𝜕𝑉

𝜕𝑦
= −

𝑞𝑎ଶ

4𝜋𝜖଴

𝜕

𝜕𝑦
ቆ

3𝑥ଶ

𝑟ହ
−

1

𝑟ଷ
ቇ 

= −
𝑞𝑎ଶ

4𝜋𝜖଴
൤3𝑥ଶ

(−5)

𝑟଺

𝜕𝑟

𝜕𝑦
−

(−3)

𝑟ସ

𝜕𝑟

𝜕𝑦
൨ 

=
𝑞𝑎ଶ

4𝜋𝜖଴
ቈ
15𝑥ଶ𝑦

𝑟଻
−

3𝑦

𝑟ସ
቉ 

 
𝐸௬ =

3𝑞𝑎ଶ

4𝜋𝜖଴𝑟ହ
ቈ
5𝑥ଶ

𝑟ଶ
− 1቉ 𝑦 =

3𝑞𝑎ଶ

4𝜋𝜖଴𝑟ହ
(5 cosଶ 𝜃 − 1)𝑦 

Similarly 

(26) 

 
 
 
 
 

𝐸௭ =
3𝑞𝑎ଶ

4𝜋𝜖଴𝑟ହ
ቈ
5𝑥ଶ

𝑟ଶ
− 1቉ 𝑧 =

3𝑞𝑎ଶ

4𝜋𝜖଴𝑟ହ
(5 cosଶ 𝜃 − 1)𝑧 

 

(27) 

After calculating the expressions for each component of 𝐸 we can find the magnitude of 𝐸 
using the expression given below 

𝐸 = ൫𝐸௬
ଶ + 𝐸௬

ଶ + 𝐸௬
ଶ൯

ଵ
ଶ 

𝐸 =
3𝑞𝑎ଶ

4𝜋𝜖଴
൤

1

𝑟଼
(5 cosଷ 𝜃 − 3 cos 𝜃)ଶ +

1

𝑟ଵ଴
(5 cosଶ 𝜃 − 1)ଶ𝑦ଶ +

1

𝑟ଵ଴
(5 cosଶ 𝜃 − 1)ଶ𝑧ଶ൨

ଵ/ଶ

 

=
3𝑞𝑎ଶ

4𝜋𝜖଴𝑟ସ
൤(5 cosଷ 𝜃 − 3 cos 𝜃)ଶ +

1

𝑟ଶ
(5 cosଶ 𝜃 − 1)ଶ(𝑦ଶ + 𝑧ଶ)ଶ൨

ଵ/ଶ

 

Since  

𝑦ଶ + 𝑧ଶ = 𝑟ଶ − 𝑥ଶ = 𝑟ଶ − 𝑟ଶ cosଶ 𝜃 = 𝑟ଶ(1 − cosଶ 𝜃) 

𝐸 =
3𝑞𝑎ଶ

4𝜋𝜖଴𝑟ସ
[(5 cosଷ 𝜃 − 3 cos 𝜃)ଶ + (5 cosଶ 𝜃 − 1)ଶ(1 − cosଶ 𝜃)]ଵ/ଶ 

On simplifying the above expression, we get 

 𝐸 =
3𝑞𝑎2

4𝜋𝜖0𝑟4 ൣ5 cos4 𝜃 − 2 cos2 𝜃 + 1൧
1/2

 (28) 

This expression gives the electric field intensity at any point due to a quadrapole. 

Energy of electrostatic field 



We have already studied that work done in moving a charge Q between two points 𝑎 and 𝑏 
against the electric force 𝐹 = 𝑄𝐸 (the force one must exert to move the charge in opposition 
to this electric force is 𝐹 = −𝑄𝐸) is given as 

𝑊௔௕ = න 𝐹 ∙ 𝑑𝑙 = −𝑄 න 𝐸 ∙ 𝑑𝑙

௕

௔

௕

௔

 

Also the electric potential difference between two points 𝑎 and 𝑏 is given by 

𝑉௕ − 𝑉௔ = න 𝐸 ∙ 𝑑𝑙

௕

௔

 

So we can write work done as  

𝑊௔௕ = 𝑄(𝑉௕ − 𝑉௔) 

In particular if you want to bring the charge from infinity to point 𝑟, the work done is  

 𝑊 = 𝑄(𝑉 − 𝑉ஶ) = 𝑄𝑉 (29) 
Where 𝑉 is the potential at point 𝑟. Electric potential at infinity is zero. Thus we see that work 
done can be taken as product of charge Q and potential V. 

The practical example of transferring charge is in case of charging a capacitor. So consider a 
parallel plate capacitor in which charge is transferred to its plates by the battery. In doing so 
work is done and this work done is stored in the capacitor in the form of electrostatic energy. 
If 𝑞 is the charge on the plates of the capacitor and 𝑉 is the potential difference between the 
plates then 𝑞 = 𝐶𝑉, where 𝐶 is called the capacitance of the capacitor. Now small amount of 
work done in supplying charge 𝑑𝑞 is  

𝑑𝑊 = 𝑉𝑑𝑞 =
𝑞

𝐶
𝑑𝑞 

Total work done in charging the capacitor from 0 to 𝑞 is  

𝑊 = න 𝑑𝑊 = න
𝑞

𝐶
𝑑𝑞 =

𝑞ଶ

2𝐶
 

This work done is stored in the capacitor in the form of electrostatic potential energy (ℰ). 
Thus we write energy stored as 

 ℰ =
𝑞ଶ

2𝐶
=

1

2
𝐶𝑉ଶ 

 
(30) 

If 𝐴 is the area of each plate of the capacitor and 𝑡 is the distance between the plates then 

 𝐶 =
𝜖଴𝐴

𝑡
 

 
(31) 



And the potential difference between the plates is given by 

 𝑉 = 𝐸𝑡 (32) 
Putting these two values from equation (31) and (32) in equation (30), we get 

ℰ =
1

2
𝜖଴𝐸ଶ𝐴𝑡 

And hence the energy density i.e. energy per unit volume is given by 

 𝜀 =
ℰ

𝐴𝑡
=

1

2
𝜖0𝐸2 (33) 

Dielectrics  

In this chapter we studied the electric fields in free space. In sections to follow we will study 
the electric fields in matter. Matter is broadly classified as conductors and insulators (also 
called dielectrics). Conductors are those materials which contain enormous amount of free 
charges in it. These charges can move through the conductors randomly and when placed in 
electric field they move in specific directions depending upon the direction of electric fields. 
By free charges we mean that all the electrons (charges) are not bound to the atomic nucleus, 
but some of them move randomly. In dielectrics there are no free charges because the 
electrons are tightly bound to the atomic nucleus. They can make small displacements but 
only within the atom or molecule. These small movements are not such that they can 
resemble the arrangements of charges in the conductor, but their influence is accountable for 
characteristics behaviour of dielectric materials. Dielectrics being insulators are expected to 
be not affected by external electric fields but when placed in external fields they show certain 
variations. (You must have studied that when a dielectric is placed between the plates of a 
parallel plate capacitor its capacitance is increased by a factor K known as the dielectric 
constant). We will study the effect of external electric field on dielectrics in the following 
sections. 

Polar and non-polar molecules 

Depending upon the distribution of charges within dielectrics its molecules can be classified 
as polar and non-polar. If the charge distribution is such that the centre of gravity of positive 
and negative charge coincides exactly we call such molecules as non-polar molecules. This 
means that there is no separation between the positive charge centre and the negative charge 
centre and hence we can say that non-polar molecules have zero net dipole moment. Non-
polar molecules, therefore, do not have any permanent dipole moment. A non-polar molecule 
has a symmetrical shape.  Examples of non-polar molecules include H2, O2, N2, CO2 and 
CH4. On the other hand, if the charge distribution is such that the centre of gravity of positive 
charge does not coincide with the centre of gravity of negative charge we call such molecules 
as polar molecules. Such molecules, therefore, constitutes permanent dipoles and hence have 
non-zero net dipole moment. Polar molecules are not symmetrical in shape. HCl, NH3, H2O 
and N2O are examples of polar molecules. 

 



Polarisation of dieletric: Induced dipoles 

To know the overall effect of external electric field on dielectric we will start with one atom 
of the dielectric. We all know that an atom is electrically neutral (i.e. it has no charge). If it is 
placed in an external electric field our guess is that there will be no effect on the atom. But 
this is not correct. This is because if we look at the internal structure of the atom it consists of 
positively nucleus with negatively charged electrons revolving around it. These two regions 
of charge within the atom are affected by the external field. The nucleus is pushed in the 
direction of electric field (electric field is directed from positive end to the negative end) 
whereas the negative charge cloud is pushed in the opposite direction. The atom now behaves 
as a tiny dipole with positive and negative charges moved slightly apart. We call them 
induced dipoles and the atom is said to be polarised. The atom now has tiny dipole moment 
p, whose direction is same as that of the external electric field. See figure 4a. 

Thus polarisation is the process in which the centre of positive charge and centre of negative 
charge of the molecules of a dielectric are separated inducing tiny dipoles when placed in 
external electric field. 

 

Figure 4a 

       

Figure 4b 

  Note that the force pulling apart the nucleus and the electrons due to external electric field is 
balanced by the force of attraction drawing them together. This leaves the atoms of the 
dielectric polarised. If the force due to external field is strong enough it will pull apart the 
atom completely and ionize the atom.     

When a dielectric is placed in external electric field it gets polarised. Tiny dipoles 
corresponding to each atom are induced in it. These dipoles align themselves according to the 
external electric field throughout the dielectric as shown in the fig. If we look across any 
length of the dielectric we will see a long string of dipoles from one end to the other (see fig 
4b). Along the line the positive charge of one dipole cancels the negative charge of the other 
which is adjacent to it, leaving two equal and opposite charges at the ends. This goes out the 
same for every length of the dielectric creating one end of the dielectric negatively charged 



and the other end positively charged.  We call the net charge at the ends bound charges. The 
word bound is used to remind us that these charges cannot be removed. The bound charges 
are the result of polarisation and we can also call them polarisation charges.  

Polar molecules where there are permanent dipoles also show polarisation. In this case when 
external electric field is applied the permanent dipoles (which have random orientation in 
absence of external electric field) experience a torque and align along the direction of electric 
field. By the same logic as above bound charges are induced on the ends of the dielectric and 
the dielectric is said to have acquired polarisation.  

Due to polarisation and electric field is set up in the dielectric whose direction is opposite to 
that of external electric field. If 𝐸଴ is the external applied field and 𝐸௕ is the electric field due 
to bound charges then the resultant electric field is given by 

𝐸 = 𝐸଴ − 𝐸௕ 

Thus the bound charges reduce the value of electric field in the dielectric. 

The induced dipole moment is directly proportional to the external electric field (as long as 
the field is not too strong) 

 𝑝 = 𝛼𝐸0 (34) 
The constant of proportionality 𝛼 is called atomic polarizability. Polarizabilty is the ability 
of the molecules to acquire a dipole moment 𝑝 in response to external applied field 𝐸଴. Its 
value depends on the detailed structure of the atom.  

Polarisation vector (P) 

Polarisation vector is the measure of degree of polarisation in a dielectric. It is defined as the 
dipole moment per unit volume of the dielectric and is denoted by 𝑷. If we have a dielectric 
slab of area 𝐴 and thickness 𝑡, then polarisation vector is  

𝑃 =
𝑑𝑖𝑝𝑜𝑙𝑒 𝑚𝑜𝑚𝑒𝑛𝑡

𝑣𝑜𝑙𝑢𝑚𝑒
=

𝑞௕𝑡

𝐴𝑡
=

𝑞௕

𝐴
 

Here 𝑞௕ is the bound charge on the dielectric slab. Also charge per unit area is the surface 

charge density, therefore, 
௤್

஺
= 𝜎௕ is the surface charge density of bound charges. Therefore 

we have 

 𝑃 =
𝑞𝑏

𝐴
= 𝜎𝑏 (35) 

Displacement vector (D) 

Consider a parallel plate capacitor carrying a charge – 𝑞 and +𝑞 on the plates establishing an 
electric field 𝐸଴. See fig 5. 

 



 

Figure 5 

 Now the Gauss law for the Gaussian surface S shown by the dotted lines reads 

඾ 𝐸଴ ∙ 𝑑𝑎 =
𝑞

𝜖଴
 

𝐸଴ ඾ 𝑑𝑎 =
𝑞

𝜖଴
 

If 𝐴 is the area of the Gaussian surface, we have 

𝐸଴𝐴 =
𝑞

𝜖଴
 

  
𝐸଴ =

𝑞

𝜖଴𝐴
 

 
(36) 

 

Figure 6 

 

Now a dielectric slab introduced between plates of a parallel plate capacitor (fig 6). This 
electric field 𝐸଴ acts as external electric field for the dielectric and polarises it. The 
polarisation field opposite to 𝐸଴ reduces the resultant field to 𝐸. Applying Gauss law to the 
Gaussian surface S, we have 

 
඾ 𝐸 ∙ 𝑑𝑎 =

𝑞 − 𝑞௕

𝜖଴
 

 
(37) 

 𝐸𝐴 =
𝑞 − 𝑞௕

𝜖଴
 (38) 



𝜖଴𝐸 =
𝑞

𝐴
−

𝑞௕

𝐴
 

But       
௤್

஺
= 𝑃, the polarisation vector 

So we have 

𝜖଴𝐸 =
𝑞

𝐴
− 𝑃 

𝜖଴𝐸 + 𝑃 =
𝑞

𝐴
 

The term on the left hand side is called the electric displacement vector 𝑫. So we have, 

 𝐷 = 𝜖଴𝐸 + 𝑃 
 

(39) 

Electric displacement vector is defined as the charge on the plates of the capacitor per unit 
area. The charge 𝑞 is charge other than the bound charge (here it is the charge on the plates of 
the capacitor). We call this charge as free charge, which can include electrons on the 
conductor, ions within the dielectrics or any other charge which is not the result of 
polarisation. Hence we can represent this charge as 𝑞௙. 

We can, therefore, write 

𝐷 =
𝑞௙

𝐴
= 𝜖 ቀ

𝑞௙

𝜖𝐴
ቁ = 𝜖 ൬

𝜎௙𝐴

𝜖𝐴
൰ = 𝜖 ቀ

𝜎௙

𝜖
ቁ = 𝜖𝐸 

Here we have used 𝑞௙ = 𝜎௙𝐴 and 
ఙ೑

ఢ
= 𝐸. So we have 

 𝐷 =  𝜖𝐸 (40) 
Thus 𝐷 is proportional to 𝐸. Here 𝜖 is called the permittivity of the material. The ratio of 
permittivity of the material to the permittivity of free space is relative permittivity or 
dielectric constant denoted by 𝐾 or 𝜖௥. That is  

𝜖௥  𝑜𝑟 𝐾 =
𝜖

𝜖଴
 

Gauss law in presence of dielectric 

Gauss law for a dielectric placed between a parallel plate capacitor is written in equation (38) 
as (replacing 𝑞௙ for 𝑞) 

 
඾ 𝐸 ∙ 𝑑𝑎 =

𝑞௙ − 𝑞௕

𝜖଴
 

 
(41) 

𝐸𝐴 =
𝑞௙ − 𝑞௕

𝜖଴
 



 𝐸 =
𝑞௙ − 𝑞௕

𝜖଴𝐴
 (42) 

Now the dielectric constant 𝐾 is the ratio of applied electric field to the reduced value of 
electric field  

𝐾 =
𝐸଴

𝐸
 

Using equations (36) (replacing 𝑞௙ for 𝑞) and (41) we can write 

𝐾 =
𝑞௙

𝑞௙ − 𝑞௕
 

 𝑞௙ − 𝑞௕ =
𝑞௙

𝐾
 (43) 

Writing equation (41) using (43) we get 

඾ 𝐸 ∙ 𝑑𝑎 =
𝑞௙

𝜖଴𝐾
=

𝑞௙

𝜖
 

඾ 𝜖𝐸 ∙ 𝑑𝑎 = 𝑞௙ 

Using equation (40), we have 

 ඾ 𝐷 ∙ 𝑑𝑎 = 𝑞𝑓 (44) 

This is the Gauss law for dielectrics in integral form. 

If 𝜌௙ is the volume charge density of free charges then the total charge within the volume 𝑑𝜏 

of the dielectrics we have 

 𝑞௙ = ම 𝜌௙𝑑𝜏 (45) 

 Using Gauss divergence theorem we can write 

 ඾ 𝐷 ∙ 𝑑𝑎 = ම(∇ ∙ 𝐷) 𝑑𝜏 (46) 

Then we can use equations (45) and (46) to rewrite equation (44) as 

ම(∇ ∙ 𝐷) 𝑑𝜏 = ම 𝜌𝑓𝑑𝜏 

ම൫∇ ∙ 𝐷 − 𝜌௙൯𝑑𝜏 = 0 

Since this equation is true for every volume, the integrant must be equal to zero. 

∇ ∙ 𝐷 − 𝜌𝑓 = 0 

 ∇ ∙ 𝐷 = 𝜌𝑓 (47) 
This is Gauss law in presence of dielectrics in differential form. 



This is very useful way to express Gauss law because it makes reference to free charges only 
and free charges are what we can deal with or control. In any problem we know about free 
charges but we initially do not know about bound charges. Bound charges are produced only 
when we put free charges in place. 

Divergence of P 

We know that the field due to the polarisation is the field due to the bound charges. Within 
the dielectrics the total charge density (𝜌) is equal to the sum of bound charge density (𝜌௕) 

and free charge density (𝜌௙). Thus, 

𝜌 = 𝜌௕ + 𝜌௙ 

The Gauss law in differential form reads 

∇ ∙ 𝐸 =
𝜌

𝜖଴
=

𝜌௕ + 𝜌௙

𝜖଴
 

 
∇ ∙ 𝜖଴𝐸 = 𝜌௕ + 𝜌௙ 

 
(48) 

From equation (36) we can write 

𝜖଴𝐸 = 𝐷 − 𝑃 

Using this equation we can write equation (48) as 

∇ ∙ (𝐷 − 𝑃) = 𝜌௕ + 𝜌௙ 

∇ ∙ 𝐷 − ∇ ∙ 𝑃 = 𝜌௕ + 𝜌௙ 

Using equation (47) ,we have, the divergence of 𝑃 as 

 ∇ ∙ 𝑃 = −𝜌௕ (49) 
 

Electric susceptibility  

Polarisation of a dielectric is due to the application of electric field to the dielectric. When 
external field is applied it polarises the dielectric and this polarisation will produce its own 
field which then results into the net field, and this in turns modifies polarisation. So the 
polarisation is the result of the net field 𝐸, and thus the polarisation vector 𝑃 is proportional 
to the net field. 

𝑃 ∝ 𝐸 

 𝑃 = 𝜖0𝜒𝑒𝐸 (50) 
The constant of proportionality 𝜒௘ is called electric susceptibility. The factor 𝜖଴ is 
introduced to make  𝜒௘ dimensionless. Materials which obey equation (50) are called linear 



dielectrics. Electric susceptibility is the measure of the ease with which the dielectric medium 
can be polarised. 

The displacement vector 𝐷 is given by 

𝐷 = 𝜖଴𝐸 + 𝑃 = 𝜖଴𝐸 + 𝜖଴𝜒௘𝐸 = 𝜖଴(1 + 𝜒௘)𝐸 

𝐷 = 𝜖଴(1 + 𝜒௘)𝐸 

Comparing this equation with equation (40) we get 

 𝜖 = 𝜖0൫1 + 𝜒𝑒൯ (51) 
In vacuum or free space where there is no material to polarise the electric susceptibility is 
zero and the permittivity 𝜖 = 𝜖଴, (called the permittivity of vacuum or free space). Now from 
equation (51) we can write 

𝜖

𝜖଴
= 1 + 𝜒௘ 

The left hand side of this equation is called relative permittivity or dielectric constant of the 
material which is denoted by 𝐾 or 𝜖௥. Thus we have 

 𝐾 = 1 + 𝜒𝑒 (52) 
This gives the relationship between dielectric constant and electric susceptibility. 

Energy in the Dielectric System 

Energy stored in a dielectric is the amount of work done in moving the free charges and put 
them all in their respective positions. We moved the free charges only because that is what 
we can move, bound charges are fixed. Therefore work done in arranging the free charge 
over a volume 𝑑𝜏 is  

 𝑊 =
1

2
ම 𝜌௙𝑉𝑑𝜏 

 
(53) 

Where 𝑉 is the electric potential.  

According to the Gauss law for dielectric we have 

∇ ∙ 𝐷 = 𝜌𝑓 

So equation (53) becomes 

𝑊 =
1

2
ම 𝑉(∇ ∙ 𝐷)𝑑𝜏 

But using  ∇ ∙ (𝐷𝑉) = 𝐷 ∙ (∇𝑉) + 𝑉(∇ ∙ 𝐷) ⇒ 𝑉(∇ ∙ 𝐷) = ∇ ∙ (𝐷𝑉) − 𝐷 ∙ (∇𝑉)  

⇒  𝑉(∇ ∙ 𝐷) = ∇ ∙ (𝐷𝑉) + 𝐷 ∙ 𝐸                                                                      [∵ 𝐸 = −∇𝑉] 

Therefore  



𝑊 =
1

2
ම[∇ ∙ (𝐷𝑉) + 𝐷 ∙ 𝐸]𝑑𝜏 

=
1

2
ම ∇ ∙ (𝐷𝑉)𝑑𝜏 +

1

2
ම(𝐷 ∙ 𝐸)𝑑𝜏 

Using the Gauss divergence theorem, we have 

ම ∇ ∙ (𝐷𝑉)𝑑𝜏 = ඾ 𝐷𝑉 ⋅ 𝑑𝑎 

Therefore 

𝑊 =
1

2
඾ 𝐷𝑉 ⋅ 𝑑𝑎 +

1

2
ම(𝐷 ∙ 𝐸)𝑑𝜏 

If we integrate over the whole surface the surface S is taken as infinity, in that case the 
potential at infinity becomes zero. Therefore  

඾ 𝐷𝑉 ⋅ 𝑑𝑎 = 0 

So  

 𝑊 =
1

2
ම(𝐷 ∙ 𝐸)𝑑𝜏 

 
(54) 

This work done is stored as the electrostatic energy ℇ of the dielectrics.  

ℇ =
1

2
ම(𝐷 ∙ 𝐸)𝑑𝜏 

This expression can be written in another form using the expression 𝐷 = 𝜖𝐸 as  

ℇ =
1

2
ම(𝜖𝐸 ∙ 𝐸)𝑑𝜏 =

1

2
ම 𝜖𝐸ଶ𝑑𝜏 

Boundary conditions satisfied by 𝑬 and 𝑫 at the interface between two homogenous 
dielectrics 

When the fields cross the boundary of two homogenous dielectrics they show a discontinuity. 
We will check for this discontinuity here. For this we will make use of two fundamental 
equations. (1) Closed line integral of electric field, 

 ර 𝐸 ∙ 𝑑𝑙 = 0 

 
(55) 

And (2) Gauss law in dielectric medium, 

 ඾ 𝐷 ∙ 𝑑𝑎 = 𝑞௙ (56) 



 
Consider two homogenous dielectrics 1 and 2 having permittivity 𝜖ଵ and 𝜖ଶ separated by a 
boundary C. Let 𝐸ଵ and 𝐸ଶ be the electric field intensities in these media. The electric fields 
have two components each as shown in figure (7), one is called the normal component and 
other is called the transverse component. Consider a closed loop ABCD, the closed line 
integral of electric field over which can be written as  

ර 𝐸 ∙ 𝑑𝑙 = න 𝐸 ∙ 𝑑𝑙

஻

஺

+ න 𝐸 ∙ 𝑑𝑙

஼

஻

+ න 𝐸 ∙ 𝑑𝑙

஽

஼

+ න 𝐸 ∙ 𝑑𝑙

஺

஽

 

 

Figure 7 

Along the lengths AB and CD, the normal components 𝐸ଵ௡ and 𝐸ଶ௡ contribute nothing to the 
line integral because 𝐸ଵ௡ ∙ 𝑑𝑙 = 𝐸ଵ௡𝑑𝑙 cos 90° = 0 and 𝐸ଶ௡ ∙ 𝑑𝑙 = 𝐸ଶ௡𝑑𝑙 cos 90° = 0. With 
the same arguments, along the lengths BC and DA, the transverse components 𝐸ଵ௧ and 
𝐸ଶ௧ make no contribution to the line integral. Therefore the closed line integral can be written 
as 

ර 𝐸 ∙ 𝑑𝑙 = (𝐸ଵ௧ ∙ 𝑤)஺஻ + ൬𝐸ଵ௡ ∙
ℎ

2
+ 𝐸ଶ௡ ∙

ℎ

2
൰

஻஼
+ (𝐸ଶ௧ ∙ 𝑤)஼஽ + ൬𝐸ଶ௡ ∙

ℎ

2
+ 𝐸ଵ௡ ∙

ℎ

2
൰

஽஺
 

= 𝐸ଵ௧𝑤 + 𝐸ଵ௡

ℎ

2
+ 𝐸ଶ௡

ℎ

2
− 𝐸ଶ௧𝑤 − 𝐸ଶ௡

ℎ

2
− 𝐸ଵ௡

ℎ

2
 

= 𝐸ଵ௧𝑤 − 𝐸ଶ௧𝑤 

Now using equation (55), we get 

𝐸ଵ௧𝑤 − 𝐸ଶ௧𝑤 = 0    ⇒ (𝐸ଵ௧ − 𝐸ଶ௧)𝑤 = 0   ⇒ 𝐸ଵ௧ − 𝐸ଶ௧ = 0 

 𝐸ଵ௧ = 𝐸ଶ௧ 
 

(57) 

Thus the transverse component of electric field is continuous across the boundary. 

Now as 𝐷 = 𝜖𝐸  or  𝐸 =
஽

ఢ
 therefore from equation (57) we have  

 
𝐷ଵ௧

𝜖ଵ
=

𝐷ଶ௧

𝜖ଶ
 

 
(58) 

This shows that the transverse component of 𝐷 is discontinuous across the bonndary. 



Now if 𝐷ଵ and 𝐷ଶ are the displacement vectors in the two media with their normal 
components 𝐷ଵ௡ and 𝐷ଶ௡ and transverse components 𝐷ଵ௧ and 𝐷ଶ௧ as shown (fig 8). Consider 
a small pill box shaped surface across the two media so that closed surface integral of 𝐷 over 
this surface is  

඾ 𝐷 ∙ 𝑑𝑎 = ൬ඵ 𝐷 ∙ 𝑑𝑎൰
௧௢௣

+ ൬ඵ 𝐷 ∙ 𝑑𝑎൰
௕௢௧௧௢௠

+ ൬ඵ 𝐷 ∙ 𝑑𝑎൰
௖௨௥௩௘ௗ

 

 

Figure 8 

By symmetry the integral (∬ 𝐷 ∙ 𝑑𝑎)௖௨௥௩௘ௗ = 0. For the top and bottom surfaces the 
transverse components of 𝐷 contribute nothing, and therefore, taking the normal components 
of 𝐷, we have  

඾ 𝐷 ∙ 𝑑𝑎 = 𝐷ଶ௡ ∙ 𝐴 + 𝐷ଵ௡ ∙ 𝐴 = 𝐷ଶ௡𝐴 − 𝐷ଵ௡𝐴 

Where 𝐴 is the area of the top and bottom surfaces with equal magnitude and opposite 
direction. Using equation (56), we get 

𝐷ଶ௡𝐴 − 𝐷ଵ௡𝐴 = 𝑞௙ 

If 𝜎௙ is the surface charge density then the total surface charge is 𝑞௙ = 𝜎௙𝐴. Then the above 

equation can be written as 

𝐷ଶ௡𝐴 − 𝐷ଵ௡𝐴 = 𝜎௙𝐴 

 
𝐷ଶ௡ − 𝐷ଵ௡ = 𝜎௙ 

 
(59) 

Thus the normal component of 𝐷 changes by an amount equal to 𝜎௙ across the boundary of 

the two media. If we have a charge free surface then 𝜎௙ = 0, and then the normal component 

of 𝐷 is continuous given by relation 

𝐷ଶ௡ − 𝐷ଵ௡ = 0 

𝐷ଵ௡ = 𝐷ଶ௡ 

This expression can also be written as 

𝜖ଵ𝐸ଵ௡ = 𝜖ଶ𝐸ଶ௡ 



The normal component of electric field is discontinuous across the boundary. 

 

 

 

 


