
1 | P a g e

Structured Query Language (SQL)

SQL is a standard language for accessing and manipulating databases.

What is SQL?

 SQL stands for Structured Query Language

 SQL lets you access and manipulate databases

 SQL became a standard of the American National Standards Institute (ANSI) in

1986, and of the International Organization for Standardization (ISO) in 1987

What Can SQL do?
SQL can execute queries against a database

 SQL can retrieve data from a database

 SQL can insert records in a database

 SQL can update records in a database

 SQL can delete records from a database

 SQL can create new databases

 SQL can create new tables in a database

 SQL can create stored procedures in a database

 SQL can create views in a database

 SQL can set permissions on tables, procedures, and views

SQL commands/statements are mainly categorized into four categories as:

1. DDL – Data Definition Language Commands
2. DQl – Data Query Language Commands
3. DML – Data Manipulation Language Commands
4. DCL – Data Control Language Commands
5. TCL- Transaction Control Language Commands

2 | P a g e

1. DDL (Data Definition Language):

DDL or Data Definition Language actually consists of the SQL commands that can be used to
define the database schema. It simply deals with descriptions of the database schema and is
used to create and modify the structure of database objects in the database.DDL is a set of
SQL commands used to create, modify, and delete database structures but not data. These
commands are normally not used by a general user, who should be accessing the database
via an application.
List of DDL commands:

 CREATE: This command is used to create the database or its objects (like table, index,
function, views, store procedure, and triggers).

 DROP: This command is used to delete objects from the database.
 ALTER: This is used to alter the structure of the database.
 TRUNCATE: This is used to remove all records from a table, including all spaces allocated

for the records are removed.
 RENAME: This is used to rename an object existing in the database.

2. DQL (Data Query Language):

DQL statements are used for performing queries on the data within schema objects. The
purpose of the DQL Command is to get some schema relation based on the query passed to
it. We can define DQL as follows it is a component of SQL statement that allows getting data
from the database and imposing order upon it. It includes the SELECT statement. This
command allows getting the data out of the database to perform operations with it. When a
SELECT is fired against a table or tables the result is compiled into a further temporary table,
which is displayed or perhaps received by the program i.e. a front-end.

List of DQL:

 SELECT: It is used to retrieve data from the database.

3. DML(Data Manipulation Language):

The SQL commands that deals with the manipulation of data present in the database belong
to DML or Data Manipulation Language and this includes most of the SQL statements. It is the
component of the SQL statement that controls access to data and to the database. Basically,
DCL statements are grouped with DML statements.

List of DML commands:

 INSERT : It is used to insert data into a table.
 UPDATE: It is used to update existing data within a table.
 DELETE : It is used to delete records from a database table.
 LOCK: Table control concurrency.

4. DCL (Data Control Language):

DCL includes commands such as GRANT and REVOKE which mainly deal with the rights,
permissions, and other controls of the database system.

List of DCL commands:

 GRANT: This command gives users access privileges to the database.
 REVOKE: This command withdraws the user’s access privileges given by using the

GRANT command.

3 | P a g e

5. TCL – Transaction Control Language.

TCL commands deal with the transaction within the database.
List of TCL commands:

 COMMIT: Commits a Transaction.
 ROLLBACK: Rollbacks a transaction in case of any error occurs.
 SAVEPOINT:Sets a save point within a transaction.
 SET TRANSACTION: Specify characteristics for the transaction.

SQL Data Types
The data type of a column defines what value the column can hold: integer,

character, money, date and time, binary, and so on.

Each column in a database table is required to have a name and a data type.

An SQL developer must decide what type of data that will be stored inside each column

when creating a table.

Data types might have different names in different database. And even if the name is the

same, the size and other details may be different.

4 | P a g e

DATATYPE DESCRIPTION

Character Data types:

DATATYPE DESCRIPTION

CHAR It can be used to store fixed-length character Strings. The default value

is 1 byte.

VARCHAR2(SIZE) It is used to store variable-length character strings. You must

specify VARCHAR2(size) maximum length between 1 to 4000

bytes.

VARCHAR(SIZE) It is similar to VARCHAR2(size)

Numeric Data types:

DATATYPE DESCRIPTION

NUMBER(p, s) You can simply specify as NUMBER to store numeric values. Also

besides, you can specify NUMBER(p, s) where p is precision(total

number of digits) and s is scale (number of digits after the decimal

point).

BINARY_FLOAT It is 32 bit single precision floating point datatype

BINARY_DOUBLE It is 64-bit double precision floating point datatype

DATE and TIME Data types:

DATE It can be used to store the year, month, day, hours, minutes, and seconds.

The standard format is ‘DD-MM-YY’

TIMESTAMP It is used to store the valid date along with time in 24-hour format ‘HH:MM:

SS’.

Larger Object (LOB) Data types:

Large unstructured data such as video clips, sound waves, texts, graphic images can be stored and
manipulated in binary or character format.

DATATYPE DESCRIPTION

BLOB It can be used to specify unstructured binary data in the database which can

store up to 128 terabytes of binary data.

CLOB It can be used to store up to 128 terabytes of character data in the database.

5 | P a g e

ROWID Datatype:

DATATYPE DESCRIPTION

ROWID This helps us to store the row’s ID that is the address of every row in the

database.

UROWID This is just a universal rowid datatype that supports all kinds of rowids.

What is SQL Operator?

An operator is a symbol specifying an action that is performed on one or more expressions.

An operator is a reserved character or word which is used in a SQL statement to query our database. We

use a WHERE clause to query a database using operators.

Operators are needed to specify conditions in a SQL statement. The available operators act as a connector

for various conditional statements.

Types of SQL Operators
We have various SQL operators, and they are as follows:

 SQL Arithmetic operators

 SQL Comparison operators

 SQL Logical operators

 SQL Compound Operators

 SQL Bitwise Operators

 SQL Unary Operator

SQL Arithmetic Operators

Sr.No Arithmetic Operators Description

1 + Add

2 – Subtract

3 * Multiply

4 / Division

5 % Modulo

6 | P a g e

SQL Comparison Operators

Sr.No Comparison Operators Description

1 = Equal

2 > Greater than

3 < Smaller than

4 >= Greater than Equal to

5 <= Smaller than Equal to

6 !< Not less than

7 != Not Equal to

8 ! > Not greater than

9 < > Value equal to

SQL Compound Operators
SQL compound operators are as shown below in the following table:

Sr.No Compound Operators Description

1 += Add equals

2 -= Subtract equals

3 *= Multiply equals

4 /= Divide equals

5 %= Modulo equals

6 &= Bitwise AND equals

7 ^-= Bitwise Exclusive equals

8 |*= Bitwise exclusive OR equals

7 | P a g e

SQL Logical Operators
SQL provides us with many logical operators to use while querying a database. All the
logical operators are listed below in the table:

Sr.No SQL Logical Operators Description

1 ALL Returns TRUE when all subqueries are satisfied

2 AND Returns TRUE if all conditions in AND are satisfied

3 ANY Returns TRUE if any subquery is satisfied

4 BETWEEN Returns TRUE if the operand is in the given range

5 EXISTS Returns true if one or more data record exists

6 IN Returns TRUE if data matches the list of conditions

7 LIKE Returns TRUE if our operand is similar to a pattern

8 NOT Returns records if the condition is not satisfied

9 OR Returns TRUE if any one of all subqueries is satisfied

10 SOME Returns TRUE if any of our subqueries is satisfied.

11 IS NULL Used to compare the NULL values.

SQL Unary Operators

Sr.No
Unary Operators

in SQL
Description

1 (-)
Returns the negative value of the

passed expression.

2 (+)
Returns the positive value of the

passed expression.

8 | P a g e

SQL Expressions

An expression is a combination of one or more values, operators, and SQL functions that evaluate to a
value.

SQL expression can be classified into following categories.

1. Boolean
2. Numeric
3. Date

SQL Boolean Expression

SQL Boolean Expression fetches data based on the condition that is mentioned as part of the
SQL query. It should fetch just single value when the query is executed. Its syntax is given
below.

SELECT column FROM table_name WHERE SINGLE_VALUE_MATCHING_EXPRESSION

SQL Numeric Expression

SQL Numeric Expression is used for performing mathematical operation in SQL query. Its
syntax is as follows:

SELECT NUMERICAL_EXPRESSION as OPERATION_NAME FROM table_name

SQL Date Expression

SQL Date Expression results in datetime value.

9 | P a g e

Tip: Make sure you have admin privilege before creating any database. Once a database is

created, you can check it in the list of databases with the following SQL command: SHOW
DATABASES;

Note: Be careful before dropping a database. Deleting a database will result in loss of
complete information stored in the database!

The SQL CREATE DATABASE Statement

The CREATE DATABASE statement is used to create a new SQL database.

Syntax
CREATE DATABASE databasename;

CREATE DATABASE Example

The following SQL statement creates a database called "testDB":

 Example:
CREATE DATABASE testDB;

The SQL DROP DATABASE Statement

The DROP DATABASE statement is used to drop an existing SQL database.

Syntax

DROP DATABASE databasename;

The SQL CREATE TABLE Statement

The CREATE TABLE statement is used to create a new table in a database.

Syntax
CREATE TABLE table_name (

column1 datatype,

column2 datatype,

column3 datatype,

....

);

10 | P a g e

Note: Be careful when updating records in a table! Notice the WHERE clause in

the UPDATE statement. The WHERE clause specifies which record(s) that should be updated.

If you omit the WHERE clause, all records in the table will be updated!

The column parameters specify the names of the columns of the table.

The datatype parameter specifies the type of data the column can hold (e.g. varchar,
integer, date, etc.).

EXAMPLE:

CREATE TABLE Persons (
PersonID int,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)

);

The SQL INSERT INTO Statement

The INSERT INTO statement is used to insert new records in a table.

INSERT INTO Syntax

It is possible to write the INSERT INTO statement in two ways:

1. Specify both the column names and the values to be inserted:

INSERT INTO table_name (column1, column2, column3, ...)

VALUES (value1, value2, value3, ...);

2. If you are adding values for all the columns of the table, you do not need to specify the
column names in the SQL query. However, make sure the order of the values is in the same
order as the columns in the table. Here, the INSERT INTO syntax would be as follows:

INSERT INTO table_name

VALUES (value1, value2, value3, ...);

The SQL UPDATE Statement

The UPDATE statement is used to modify the existing records in a table.

UPDATE Syntax
UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

11 | P a g e

Note: Be careful when deleting records in a table! Notice the WHERE clause in

the DELETE statement. The WHERE clause specifies which record(s) should be deleted. If you

omit the WHERE clause, all records in the table will be deleted!

UPDATE Table

The following SQL statement updates the first customer (CustomerID = 1) with a new

contact person and a new city.

Example
UPDATE Customers

SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'

WHERE CustomerID = 1;

The SQL DROP TABLE Statement

The DROP TABLE statement is used to drop an existing table in a database.

Syntax
DROP TABLE table_name;

The SQL DELETE Statement

The DELETE statement is used to delete existing records in a table.

DELETE Syntax
DELETE FROM table_name WHERE condition;

12 | P a g e

SQL ALTER TABLE Statement

The ALTER TABLE statement is used to add, delete, or modify columns in an existing table.

The ALTER TABLE statement is also used to add and drop various constraints on an existing

table.

ALTER TABLE - ADD Column

To add a column in a table, use the following syntax:

ALTER TABLE table_name

ADD column_name datatype;

The following SQL adds an "Email" column to the "Customers" table:

Example
ALTER TABLE Customers

ADD Email varchar(255);

ALTER TABLE – DROP COLUMN
To delete a column in a table, use the following syntax (notice that some database systems

don't allow deleting a column):

ALTER TABLE table_name

DROP COLUMN column_name;

13 | P a g e

The following SQL deletes the "Email" column from the "Customers" table:

Example
ALTER TABLE Customers

DROP COLUMN Email;

ALTER TABLE - ALTER/MODIFY COLUMN

To change the data type of a column in a table, use the following syntax:

SQL Server / MS Access:

ALTER TABLE table_name
ALTER COLUMN column_name datatype;

Oracle 10G and later:

ALTER TABLE table_name
MODIFY column_name datatype;

The SQL SELECT Statement

The SELECT statement is used to select data from a database.

The data returned is stored in a result table, called the result-set.

SELECT Syntax
SELECT column1, column2, ...

FROM table_name;

Here, column1, column2, ... are the field names of the table you want to select data from. If

you want to select all the fields available in the table, use the following syntax:

SELECT * FROM table_name;

The SQL SELECT DISTINCT Statement

The SELECT DISTINCT statement is used to return only distinct (different) values.

Inside a table, a column often contains many duplicate values; and sometimes you only

want to list the different (distinct) values.

14 | P a g e

Note: The WHERE clause is not only used in SELECT statements, it is also used

in UPDATE, DELETE, etc.!

Note: Not all database systems support the SELECT TOP clause. MySQL supports

the LIMIT clause to select a limited number of records, while Oracle uses FETCH
FIRST n ROWS ONLY and ROWNUM.

SELECT DISTINCT Syntax
SELECT DISTINCT column1, column2, ...

FROM table_name;

The SQL WHERE Clause

The WHERE clause is used to filter records.

It is used to extract only those records that fulfill a specified condition.

WHERE Syntax
SELECT column1, column2, ...

FROM table_name

WHERE condition;

WHERE Clause Example

The following SQL statement selects all the customers from the country "Mexico", in the

"Customers" table:

Example
SELECT * FROM Customers

WHERE Country='Mexico';

The SQL SELECT TOP Clause

The SELECT TOP clause is used to specify the number of records to return.

The SELECT TOP clause is useful on large tables with thousands of records. Returning a

large number of records can impact performance.

SQL Server / MS Access Syntax:

SELECT TOP number|percent column_name(s)
FROM table_name
WHERE condition;

15 | P a g e

Example

Example

The SQL AND, OR and NOT Operators

The WHERE clause can be combined with AND, OR, and NOT operators.

The AND and OR operators are used to filter records based on more than one condition:

 The AND operator displays a record if all the conditions separated by AND are TRUE.

 The OR operator displays a record if any of the conditions separated by OR is TRUE.

The NOT operator displays a record if the condition(s) is NOT TRUE.

AND Syntax
SELECT column1, column2, ...

FROM table_name

WHERE condition1 AND condition2 AND condition3 ...;

OR Syntax
SELECT column1, column2, ...

FROM table_name

WHERE condition1 OR condition2 OR condition3 ...;

NOT Syntax
SELECT column1, column2, ...

FROM table_name

WHERE NOT condition;

AND Example

The following SQL statement selects all fields from "Customers" where country is "Germany"

AND city is "Berlin":

SELECT * FROM Customers

WHERE Country='Germany' AND City='Berlin';

OR Example

The following SQL statement selects all fields from "Customers" where city is "Berlin" OR

"München":

SELECT * FROM Customers

WHERE City='Berlin' OR City='München';

16 | P a g e

Example

Note: MS Access uses an asterisk (*) instead of the percent sign (%), and a question mark
(?) instead of the underscore (_).

NOT Example

The following SQL statement selects all fields from "Customers" where country is NOT

"Germany":

SELECT * FROM Customers

WHERE NOT Country='Germany';

The SQL LIKE Operator
The LIKE operator is used in a WHERE clause to search for a specified pattern in a column.

There are two wildcards often used in conjunction with the LIKE operator:

 The percent sign (%) represents zero, one, or multiple characters

 The underscore sign (_) represents one, single character

The percent sign and the underscore can also be used in combinations!

LIKE Syntax
SELECT column1, column2, ...

FROM table_name

WHERE columnN LIKE pattern;

Here are some examples showing different LIKE operators with '%' and '_' wildcards:

LIKE Operator

Description

WHERE CustomerName LIKE 'a%'

Finds any values that start with "a"

WHERE CustomerName LIKE '%a'

Finds any values that end with "a"

WHERE CustomerName LIKE
'%or%'

Finds any values that have "or" in any position

WHERE CustomerName LIKE '_r%'

Finds any values that have "r" in the second position

17 | P a g e

WHERE CustomerName LIKE 'a_%'

Finds any values that start with "a" and are at least 2
characters in length

WHERE CustomerName LIKE 'a

%'

Finds any values that start with "a" and are at least 3
characters in length

WHERE ContactName LIKE 'a%o'

Finds any values that start with "a" and ends with "o"

SQL Wildcard Characters

A wildcard character is used to substitute one or more characters in a string.

Wildcard characters are used with the LIKE operator. The LIKE
operator is used in a WHERE clause to search for a specified pattern in

a column.

Symbol

Description

Example

%

Represents zero or more characters

bl% finds bl, black, blue,

and blob

_

Represents a single character

h_t finds hot, hat, and hit

[]

Represents any single character within

the brackets

h[oa]t finds hot and hat,

but not hit

^

Represents any character not in the

brackets

h[^oa]t finds hit, but not

hot and hat

-

Represents any single character within

the specified range

c[a-b]t finds cat and cbt

18 | P a g e

The SQL ORDER BY Clause

The ORDER BY keyword is used to sort the result-set in ascending or descending order.

The ORDER BY keyword sorts the records in ascending order by default. To sort the records

in descending order, use the DESC keyword.

ORDER BY Syntax
SELECT column1, column2, ...

FROM table_name

ORDER BY column1, column2, ... ASC|DESC;

ORDER BY Example

The following SQL statement selects all customers from the "Customers" table, sorted by

the "Country" column:

Example
SELECT * FROM Customers

ORDER BY Country;

The SQL GROUP BY Clause
The GROUP BY Statement in SQL is used to arrange identical data into groups with the
help of some functions. i.e if a particular column has same values in different rows then
it will arrange these rows in a group.

The GROUP BY statement groups rows that have the same values into summary rows, like

"find the number of customers in each country".

The GROUP BY statement is often used with aggregate functions

(COUNT(), MAX(), MIN(), SUM(), AVG()) to group the result-set by one or more columns.

GROUP BY Syntax
SELECT column_name(s)

FROM table_name

WHERE condition

GROUP BY column_name(s)

ORDER BY column_name(s);

19 | P a g e

SQL GROUP BY Examples

The following SQL statement lists the number of customers in each country:

Example
SELECT COUNT(CustomerID), Country

FROM Customers

GROUP BY Country;

The SQL HAVING Clause
The HAVING Clause enables you to specify conditions that filter which group results appear in

the results.

The WHERE clause places conditions on the selected columns, whereas the HAVING clause
places conditions on groups created by the GROUP BY clause.

The HAVING clause was added to SQL because the WHERE keyword cannot be used with

aggregate functions.

HAVING Syntax
SELECT column_name(s)

FROM table_name

WHERE condition

GROUP BY column_name(s)

HAVING condition

ORDER BY column_name(s);

What is an Aggregate Function in SQL?

An aggregate function in SQL performs a calculation on multiple values and returns a single
value. SQL provides many aggregate functions that include avg, count, sum, min, max, etc. An
aggregate function ignores NULL values when it performs the calculation, except for the count
function.
An aggregate function in SQL returns one value after calculating multiple values of a column.
We often use aggregate functions with the GROUP BY and HAVING clauses of the SELECT
statement.

Various types of SQL aggregate functions are:

Count()

Sum()

Avg()

Min()

Max()

20 | P a g e

The COUNT() function returns the number of rows that matches a specified criterion.

COUNT() Syntax
SELECT COUNT(column_name)

FROM table_name

WHERE condition;

The AVG() function returns the average value of a numeric column.

AVG() Syntax
SELECT AVG(column_name)

FROM table_name

WHERE condition;

The SUM() function returns the total sum of a numeric column.

SUM() Syntax
SELECT SUM(column_name)

FROM table_name

WHERE condition;

Note: NULL values are ignored.

The MIN() function returns the smallest value of the selected column.

MIN() Syntax
SELECT MIN(column_name)

FROM table_name

WHERE condition;

The MAX() function returns the largest value of the selected column.

MAX() Syntax
SELECT MAX(column_name)

FROM table_name

WHERE condition;

21 | P a g e

22 | P a g e

SQL JOIN

A JOIN clause is used to combine rows from two or more tables, based on a related column

between them

Different Types of SQL JOINs

Here are the different types of the JOINs in SQL:

 (INNER) JOIN: Returns records that have matching values in both tables

 LEFT (OUTER) JOIN: Returns all records from the left table, and the matched

records from the right table

 RIGHT (OUTER) JOIN: Returns all records from the right table, and the matched

records from the left table

 FULL (OUTER) JOIN: Returns all records when there is a match in either left or right

table

SQL INNER JOIN Keyword

The INNER JOIN keyword selects records that have matching values in both tables.

INNER JOIN Syntax
SELECT column_name(s)

FROM table1

INNER JOIN table2

ON table1.column_name = table2.column_name;

23 | P a g e

SQL LEFT JOIN Keyword

The LEFT JOIN keyword returns all records from the left table (table1), and the matching

records from the right table (table2). The result is 0 records from the right side, if there is

no match.

LEFT JOIN Syntax
SELECT column_name(s)

FROM table1

LEFT JOIN table2

ON table1.column_name = table2.column_name;

Note: In some databases LEFT JOIN is called LEFT OUTER JOIN.

SQL RIGHT JOIN Keyword

The RIGHT JOIN keyword returns all records from the right table (table2), and the matching

records from the left table (table1). The result is 0 records from the left side, if there is no

match.

RIGHT JOIN Syntax
SELECT column_name(s)

FROM table1

RIGHT JOIN table2

ON table1.column_name = table2.column_name;

24 | P a g e

Note: In some databases RIGHT JOIN is called RIGHT OUTER JOIN.

SQL FULL OUTER JOIN Keyword

The FULL OUTER JOIN keyword returns all records when there is a match in left (table1) or

right (table2) table records.

Tip: FULL OUTER JOIN and FULL JOIN are the same.

FULL OUTER JOIN Syntax
SELECT column_name(s)

FROM table1

FULL OUTER JOIN table2

ON table1.column_name = table2.column_name

WHERE condition;

Note: FULL OUTER JOIN can potentially return very large result-sets!

SQL Self Join

A self join is a regular join, but the table is joined with itself.

Self Join Syntax
SELECT column_name(s)

FROM table1 T1, table1 T2

WHERE condition;

T1 and T2 are different table aliases for the same tabl

25 | P a g e

SQL Views

SQL CREATE VIEW Statement

In SQL, a view is a virtual table based on the result-set of an SQL statement.

A view contains rows and columns, just like a real table. The fields in a view are fields from

one or more real tables in the database.

You can add SQL statements and functions to a view and present the data as if the data
were coming from one single table.

A view is created with the CREATE VIEW statement.

CREATE VIEW Syntax
CREATE VIEW view_name AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

Note: A view always shows up-to-date data! The database engine recreates the view, every
time a user queries it.

SQL CREATE VIEW Examples

The following SQL creates a view that shows all customers from Brazil:

Example
CREATE VIEW Brazil_Customers AS

SELECT CustomerName, ContactName

FROM Customers

WHERE Country = 'Brazil';

26 | P a g e

SQL Constraints

SQL constraints are used to specify rules for the data in a table.

Constraints are used to limit the type of data that can go into a table. This ensures the

accuracy and reliability of the data in the table. If there is any violation between the

constraint and the data action, the action is aborted.

Constraints can be column level or table level. Column level constraints apply to a column,

and table level constraints apply to the whole table.

The following constraints are commonly used in SQL:

 NOT NULL - Ensures that a column cannot have a NULL value

 UNIQUE - Ensures that all values in a column are different

 PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely identifies each

row in a table

 FOREIGN KEY - Prevents actions that would destroy links between tables

 CHECK - Ensures that the values in a column satisfies a specific condition

 DEFAULT - Sets a default value for a column if no value is specified

 CREATE INDEX - Used to create and retrieve data from the database very quickly

 Constraints can be specified when the table is created with the CREATE

TABLE statement, or after the table is created with the ALTER TABLE statement.

Syntax

CREATE TABLE table_name (

column1 datatype constraint,

column2 datatype constraint,

column3 datatype constraint,

....

);

SQL NOT NULL on CREATE TABLE

The following SQL ensures that the "ID", "LastName", and "FirstName" columns will NOT

accept NULL values when the "Persons" table is created:

Example
CREATE TABLE Persons (

ID int NOT NULL,

LastName varchar(255) NOT NULL,

FirstName varchar(255) NOT NULL,

Age int

);

27 | P a g e

SQL UNIQUE Constraint on CREATE TABLE

The following SQL creates a UNIQUE constraint on the "ID" column when the "Persons" table

is created:

SQL Server / Oracle / MS Access:

CREATE TABLE Persons (

ID int NOT NULL UNIQUE,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int

);

SQL CHECK on CREATE TABLE

The following SQL creates a CHECK constraint on the "Age" column when the "Persons" table

is created. The CHECK constraint ensures that the age of a person must be 18, or older:

CREATE TABLE Persons (

ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
CHECK (Age>=18)

);

SQL DEFAULT on CREATE TABLE

The following SQL sets a DEFAULT value for the "City" column when the "Persons" table is

created:

My SQL / SQL Server / Oracle / MS Access:

CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
City varchar(255) DEFAULT 'Sandnes'

);

28 | P a g e

SQL PRIMARY KEY on CREATE TABLE

SQL Server / Oracle / MS Access:

CREATE TABLE Persons (

ID int NOT NULL PRIMARY KEY,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int

);

SQL FOREIGN KEY Constraint

The FOREIGN KEY constraint is used to prevent actions that would destroy links between

tables.

A FOREIGN KEY is a field (or collection of fields) in one table, that refers to the

PRIMARY KEY in another table.

The table with the foreign key is called the child table, and the table with the primary key is

called the referenced or parent table.

CREATE TABLE Orders (

OrderID int NOT NULL,
OrderNumber int NOT NULL,
PersonID int,
PRIMARY KEY (OrderID),
FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)

);

To allow naming of a FOREIGN KEY constraint, and for defining a FOREIGN KEY constraint on

multiple columns, use the following SQL syntax:

MySQL / SQL Server / Oracle / MS Access:

CREATE TABLE Orders (

OrderID int NOT NULL,
OrderNumber int NOT NULL,
PersonID int,
PRIMARY KEY (OrderID),
CONSTRAINT FK_PersonOrder FOREIGN KEY (PersonID)
REFERENCES Persons(PersonID)

);

